
The graph of y = f(x) is shown below.

Mylana transforms y = f(x) such that the equation of the new graph is g(x) + 3 = f(x + 4).

- 1. The graph of y = g(x) lies in Quadrant
 - A. I
 - В. П
 - с. ш
 - D. IV

Use the following information to answer the next question.

The graph of y = f(x) is transformed to produce the graph of $\frac{1}{4}g(x) = f\left(\frac{1}{9}x\right)$.

The graph of y = f(x) was horizontally stretched about the y-axis by a factor of ___i and vertically stretched about the x-axis by a factor of ___i.

The statement above is completed by the information in row

Row	î	ü
A.	1/9	1/4
В.	19	4
C.	9	1/4
D.	9	4

Math 30-1 Practice Diploma Modified from: questaplus.alberta.ca

Use the following information to answer the next question.

The range of the graph of y = f(x) is $y \ge 4$. The graph of the function y = f(x) is stretched vertically about the x-axis by a factor of 2 and then translated 9 units down to become the graph of y = g(x).

- 3. The range of the graph of y = g(x) is
 - A. [-1, ∞)
 - B. [−5, ∞)
 - C. [-7, ∞)
 - D. [-10, co)
- 4. If the graph of $y = (x + 6)^2 5$ is reflected in the x-axis, then the equation of the new graph is

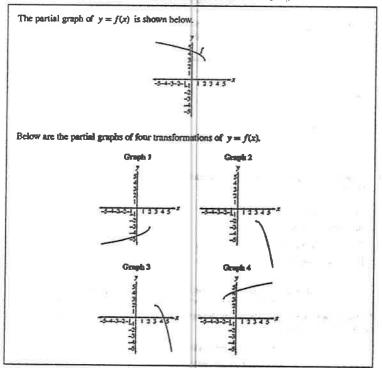
A.
$$y = -(x+6)^2 + 5$$

B.
$$y = -(x+6)^2 - 5$$

C.
$$y = (-x+6)^2 + 5$$

D.
$$y = (-x+6)^2 - 5$$

Use the following information to answer the next question.

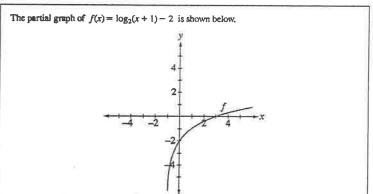

A student made the following statements about the graph of the exponential function $f(x) = ab^x - 4$, where a > 1, b > 1.

- 1 The y-intercept is at -4.
- 2 The y-intercept is at (a-4).
- 3 The domain is the set of all real numbers.
- 4 The range is $\{y \mid y > 4, y \in R\}$.
- 5 The graph has one x-intercept.
- 6 There is no x-intercept.

Numerical Response

1. The three statements above that are true for the graph of y = f(x) are numbered _____, and _____.

(Record all three digits of your answer in any order below.)



5. The partial graph that represents y = f(-x) is ___i and the partial graph that represents $y = f^{-1}(x)$ is ___i

The statement above is completed by the information in row

Row	i	II K		
A.	Graph 1	Citaph 3		
B. Graph 1		Cuph 2		
C.	Graph 4	Glaph 3		
D. Graph 4		Guph 2		

Math 30-1 Practice Diploma Modified from: questaplus.alberta.ca Use the following information to answer the next question.

- 6. On the graph of the inverse of y = f(x), the y-intercept is
 - A. -2
 - B. 2
 - C. -3
 - D. 3
- 7. The equation $a=3b^{(2p)}$ can also be expressed in the logarithmic form
 - A. $y = 2\log_{3b}(a)$
 - B. $y = 2\log_b\left(\frac{a}{2}\right)$
 - $C. \quad y = \frac{1}{2} \log_{3b}(a)$
 - $D. \quad y = \frac{1}{2} \log_{\mathbf{b}} \left(\frac{a}{3} \right)$

- 8. An equivalent expression for $2\log_3 a \log_3 c + \log_3 \sqrt{b}$ is
 - A. $\log_3\left(\frac{a^2\sqrt{b}}{c^2}\right)$
 - $\mathbf{B.} \quad \log_3\!\!\left(\frac{a^2\sqrt{b}}{c}\right)$
 - C. $\log_3\left(\frac{a^2}{c\sqrt{b}}\right)$
 - $\mathbf{D.} \quad \log_3\!\!\left(\frac{a^2}{c^2\sqrt{b}}\right)$
- 9. Given that $\log_b a = c$, where a, b > 0, and $b \ne 1$, a simplified expression

for
$$\log_b \left(\frac{\sqrt{b}}{a} \right)$$
 is

- A. $\frac{1}{2}b-c$
- **B.** $\frac{1}{2} a$
- C. $\frac{b}{2c}$
- $D. \quad \frac{1}{2c}$

Math 30-1 Practice Diploma Modified from: questaplus.alberta.ca

Use the following information to answer the next question,

The equations of two functions, where a > 1, are given below. Function g is a transformation of function f.

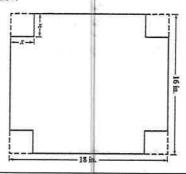
$$f(x) = \log_a x$$

$$g(x) = \log_a x + \log_a a$$

- 10. The graph of y = g(x) is the graph of y = f(x) translated
 - A. I unit up
 - B. a units up
 - C. I unit left
 - D. a units left

Use the following information to answer the next question.

A student is solving the equation $\log_a(a-2) + \log_a(2a+1) = 2$, where a > 2, by using an algebraic process.


- 11. By correctly simplifying the equation above, the student could obtain the equation
 - A. $2a^2 5a 2 = 0$
 - B. $2a^2 3a 4 = 0$
 - C. $a^2 3a 2 = 0$
 - D. $a^2 3a + 1 = 0$

Numerical Response

2. The radioactive isotope oxygen-22 has a half-life of 2.25 seconds. The time it will take for a sample of oxygen-22 to decay to 35% of its original amount, to the nearest hundredth of a second, is _______s.

(Record your answer below.)

An 18 in. by 16 in. rectangular piece of cardboard is used to make an open-top box with a volume of 336 in.³ by cutting identical squares, of side length x inches, from each corner. A diagram is shown below.

12. A polynomial equation that can be used to determine the dimensions of the box is

A.
$$x(18-2x)(16-2x)+336=0$$

B.
$$x(18-2x)(16-2x)-336=0$$

C.
$$2x(18-x)(16-x)+336=0$$

D.
$$2x(18-x)(16-x)-336=0$$

Use the following information to answer the next question.

One factor of the polynomial $2x^3 + 7x^2 - 2x - 15$ is x + 3. The remaining factor can be expressed in the form $ax^2 + bx - c$.

Numerical Response

3. The values of a, b, and c are, respectively, _

_____, and ____

(Record all three digits of your answer below.)

Math 30-1 Practice Diploma Modified from: questaplus.alberta.ca Use the following information to answer the next question.

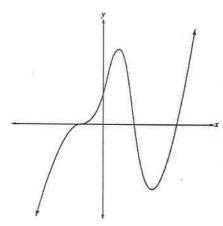
A student constructed the following table of values for a third-degree polynomial.

x	-6	-4	-2	0	I	4	5	6
7	33	0	-7	0	5	8	0	-15

13. The equation of the polynomial described by the table of values is

A.
$$y = -x(x+5)(x-4)$$

B.
$$y = -\frac{1}{4}x(x+5)(x-4)$$


C.
$$y = -x(x-5)(x+4)$$

D.
$$y = -\frac{1}{4}x(x-5)(x+4)$$

Numerical Response

4. If the domain of the radical function $f(x) = \sqrt{23 - 5x} + 7.1$ is $x \le k$, then the value of k, to the nearest tenth, is ______.

The graph of a polynomial function is shown below. Five statements regarding the function are provided.

Statement 1

The polynomial function is of odd degree.

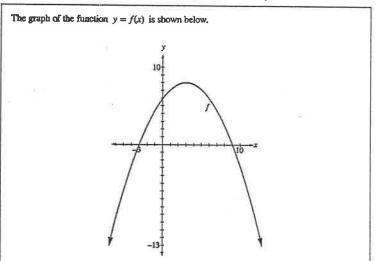
Statement 2

The least possible degree of the polynomial function is 3.

Statement 3

The leading coefficient is positive,

Statement 4


The polynomial function has an absolute maximum point.

Statement 5 At least one of the roots has an odd multiplicity.

- 14. The number of true statements that describe the polynomial function above is
 - A. 2
 - B. 3
 - C. 4
 - D. 5

Math 30-1 Practice Diploma Modified from: questaplus.alberta.ca

Use the following information to answer the next question.

- 15. When the graph of y = f(x) is transformed to the graph of $y = \sqrt{f(x)}$, the number of invariant points is
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Two rational functions are given below.

$$f(x) = \frac{x - 7}{3x^2 - 15x}$$

$$g(x) = \frac{x-1}{x^2 - 6x + 8}$$

The equations of the vertical asymptotes for the function y = f(x) are x = a and x = b.

The equations of the vertical asymptotes for the function y = g(x) are x = c and x = d.

Numerical Response

5. In the functions above, the value of

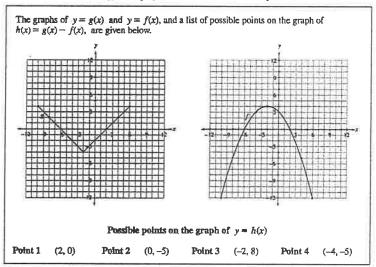
a is _____ (Record in the first box)

b is _____ (Record in the second box)

c is _____ (Record in the third box)

d is _____ (Record in the fourth box)

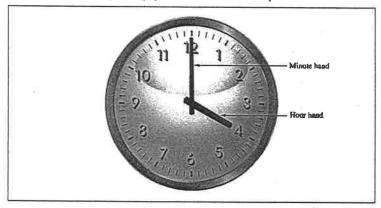
16. If $f(x) = \sqrt{3x}$ and $g(x) = x^2 + 2x + 1$, then an expression for g(f(x)) is


A. $3x + 2\sqrt{3x} + 1$

B.
$$9x^2 + 2\sqrt{3x} + 1$$

C.
$$3x + \sqrt{6x} + 1$$

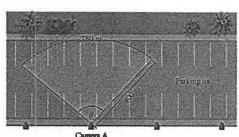
D.
$$9x^2 + \sqrt{6x} + 1$$


Math 30-1 Practice Diploma Modified from: questaplus.alberta.ca Use the following information to answer the next question.

Numerical Response

6. The three points listed above that exist on the graph of y = h(x) are numbered _____, and _____.

(Record all three digits of your answer in any order)



- 17. In 40 minutes, the number of radians the minute hand of a clock will travel through is
 - A. #
 - B, $\frac{\pi}{20}$
 - C. $\frac{2\pi}{3}$
 - D. $\frac{4\pi}{3}$

Math 30-1 Practice Diploma Modified from: questaplus.alberta.ca

Use the following information to answer the next question.

To prevent car thefts in a parking lot, security cameras are installed on the outer walls of several buildings, as represented in the diagram below. Camera A is programmed to have a recognition range of 400 m and covers an arc length of 780 m.

Note: This diagram is not drawn to scale.

- 18. The value of the angle, θ , to the nearest degree, that Camera A turns through is
 - A. 290°
 - B. 112°
 - C. 92°
 - D. 29°

Use the following information to answer the next question.

The following statements are made with reference to the unit circle.

Statement I The point $A\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ lies on the unit circle.

Statement II The point $B(\frac{1}{\sqrt{2}}, \frac{1}{2})$ lies on the unit circle.

Statement III For any point on the unit circle, $x^2 + y^2 = 1$.

Statement IV Any point that lies on the unit circle can be described as $(\sin \theta, \cos \theta)$.

- 19. The statements that are true are numbered
 - A. I and III
 - B. I and IV
 - C. II and III
 - D. III and IV

Point P(x, y) lies on the terminal arm of an angle, θ , in standard position.

- 20. Given that $\sin \theta = \frac{5}{\sqrt{29}}$ and $\frac{\pi}{2} \le \theta \le \pi$, the coordinates of Point P could be
 - A. (-2, 5)
 - B. (-5, 2)
 - C. $(-2, \sqrt{29})$
 - **D.** $(-5, \sqrt{29})$

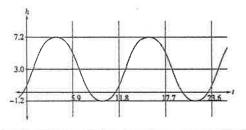
Use the following information to answer the next question.

If $\cot \theta = \frac{-1}{\sqrt{3}}$ and $\csc \theta < 0$, where $0 \le \theta < 2\pi$, then the value of θ can be expressed as $\frac{a\pi}{b}$

- 21. Possible values of a and b are, respectively,
 - A. 2 and 3
 - B. 5 and 3
 - C. 5 and 6
 - D. 11 and 6

Math 30-1 Practice Diploma
Modified from: questaplus.alberta.ca

Use the following information to answer the next question.


Below are five statements about the graph of $f(x) = -6 \sin(\frac{1}{2}x + \pi) + 10$.

- 1 The period of the graph of f(x) is 4π .
- 2 The y-intercept of the graph of f(x) is 4.
- 3 The amplitude of the graph of f(x) is -6.
- 4 The graph of $g(x) = 4\cos(2x \pi) + 12$ has the same maximum value as f(x).
- 5 The graph of f(x) is the same as the graph of $h(x) = -6\sin\left(\frac{1}{2}x\right) + 10$ if h(x) is translated horizontally 2π units left.

Numerical Response

7. The three statements above that are correct are numbered _____, and ______ and ______ (Record all three digits of your answer in any order.)

The paddlewheel on a ferry boat has a radius of 4.2 m and rotates at a constant rate. The height, h, in metres, above the surface of the water of a particular point on the edge of the wheel at time t, in seconds, can be modelled by the function $h = a \sin[b(t-1.2)] + d$. The graph of the function is shown below.

22. The values of b and d in the equation above are, respectively,

A.
$$\frac{\pi}{11.8}$$
 and 3.0

B.
$$\frac{\pi}{11.8}$$
 and 4.2

C.
$$\frac{\pi}{5.9}$$
 and 3.0

D.
$$\frac{\pi}{5.9}$$
 and 4.2

Use the following information to answer the next question.

A student decides to graphically solve the equation $\sec^2 x + 1 = 3 \tan x$ by graphing two functions. A list of possible functions that the student could use is provided below.

1
$$y = 2$$

$$3 y = 3 \tan x$$

$$2 \qquad y = -\tan^2 x$$

$$4 \quad y = 2 + \tan^2 x$$

$$6 \quad y = 3\tan x - \tan^2 x$$

Numerical Response

8. To solve the equation correctly, the student could graph the functions numbered _____ and _____. (There is more than one possible answer.)

(Record both digits of your answer in any order.)

Math 30-1 Practice Diploma Modified from: questaplus.alberta.ca

Use the following information to answer the next question.

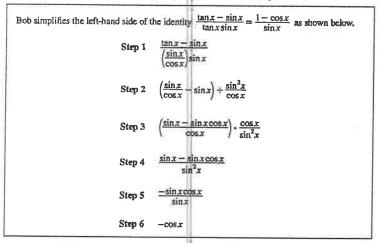
Carol is asked to solve the equation $3\sin x + \sqrt{8} = -\sin x$ algebraically, where $0^{\circ} \le x < 360^{\circ}$. Carol simplified the equation to the form $\sin x = a$.

23. The value of a is

A.
$$-\sqrt{2}$$

B.
$$-\frac{\sqrt{2}}{2}$$

D.
$$\frac{\sqrt{2}}{2}$$


24. Given that $tan x = \frac{3}{4}$, where 180° < x < 270°, the exact value of cos(x - 30°) is

A.
$$\frac{3\sqrt{3}+4}{10}$$

B.
$$\frac{-3\sqrt{3}-4}{10}$$

C.
$$\frac{3+4\sqrt{3}}{10}$$

D.
$$\frac{-3-4\sqrt{3}}{10}$$

Numerical Response

9. The first recorded error in Bob's simplification is in Step______

(Record your answer:)

Use the following information to answer the next question.

In 2008, the province of Alberta had three area codes: 780, 403, and 587. Telephone numbers in Alberta consist of the area code followed by a 7-digit number that cannot begin with the digits 0 or 1, and the digits can be repeated.

- 25. How many different phone numbers were available in the province of Alberta in 2008?
 - A. 24 000 000
 - B. 30 000 000
 - C. 216 000 000
 - D. 270 000 000

Math 30-1 Practice Diploma

Modified from: questaplus.alberta.ca

Use the following information to answer the next question.

Each switch on a panel can be set in 2 positions, "on" or "off," as shown below.

- 26. How many different setting arrangements are possible if 2 switches must be on and 2 switches must be off?
 - A. 4
 - B. 6
 - **C.** 8
 - D. 12

Use the following information to answer the next question.

In a particular family of 8 children, there are 5 boys and 3 girls. A photographer is hired to take a series of family pictures of the children only. For one of the pictures, the photographer selects 2 boys and 1 girl and arranges them in a row.

- 27. The number of different ways of arranging the three children for this picture is
 - A. 30
 - B. 60
 - C. 180
 - D. 360

Numerical Response

The number of ways of arranging all the letters of the town name ENILDA if the vowels must be together and in alphabetical order is ______.

(Record your answer.)

A student is asked to identify which of the following problems can be solved using $\binom{n}{r}$.

- 1 The number of different arrangements using all the letters of the word POSITIVE.
- 2 The number of different 5-player teams that can be selected from 7 boys and 6 girls.
- 3 The number of line segments that can be drawn using the vertices of an 8-sided polygon that are marked on a circle.
- 4 The number of different ways to choose 3 cupcakes from a display of 8 different cupcakes at a coffee shop.
- 5 The number of different ways to assign the job of stage manager and costume director in a school play, if 5 students apply.

Numerical Response

11. The three problems above that can be solved using $\binom{n}{r}$ are numbered _____, and _____.

(Record all three digits of your answer in any order.)

- 28. In the expansion of the binomial $\left(x \frac{3}{x}\right)^6$, written in descending powers of x, the term that contains x^2 is term number
 - A. 5
 - B. 4
 - C. 3
 - D. 2

Use the following information to answer the next question.

In the expansion of the binomial $\left(2x + \frac{1}{2}\right)^{3}$, written in descending powers of x, the fifth term can be expressed in the form ax^{b} , where $a, b \in \mathbb{N}$.

Numerical Response

12. The value of the coefficient a is ______

(Record your answer.)

¥